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Quantum-critical behavior of the itinerant electron antiferromagnet ðV0:9Ti0:1Þ2O3 has been studied by

single-crystal neutron scattering. By directly observing antiferromagnetic spin fluctuations in the

paramagnetic phase, we have shown that the characteristic energy depends on temperature as c1 þ
c2T

3=2, where c1 and c2 are constants. This T3=2 dependence demonstrates that the present strongly

correlated d-electron antiferromagnet clearly shows the criticality of the spin-density-wave quantum

phase transition in three space dimensions.
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In recent years, novel viewpoints of matter have been
exploited by quantum phase transitions (QPT) [1,2], zero-
temperature second-order phase transitions tuned by pres-
sure or other controlling parameters. Around a QPT, the
state of matter is characterized by singular behavior of
fluctuating order parameters having both quantum me-
chanical and thermal origins. Quantum phase transitions
are investigated in broad fields ranging from high tempera-
ture superconductors [3,4], metal-insulator transitions [5],
to heavy fermions [6,7]. Although a number of QPTs have
been investigated experimentally and theoretically, many
problems are under controversial debates.

A QPT separating a ferromagnetic (FM) or antiferro-
magnetic (AFM) state to a paramagnetic state in an itiner-
ant electron system has been studied for decades. Its theory
was first developed by Moriya and coworkers [8–10]. The
modern formulation of this theory using renormalization
group techniques was provided by Hertz [11,12]. The
theoretical predictions of the FM QPT are in general sup-
ported by the experimental studies of, for instance,
d-electron FM metals MnSi and ZrZn2 [8,13,14].
However, recent studies of the FM QPT have shown that
there are important perturbative effects closer to the critical
point [7,15,16].

For the itinerant AFM QPT, referred to as the spin
density wave (SDW) QPT, the problem is more compli-
cated and is not settled. Experimentally, thermodynamic
and transport properties studied on, e.g., d-electron AFM
metals �-Mn, V3Se4 [8], and f-electron AFM heavy fer-
mions [6,7] are in rough agreement with theories of the
SDW QPT. However, most neutron scattering studies seem
to contradict expectations of the SDW QPT [1]. For ex-
ample, observed AFM spin fluctuations of the heavy fer-
mion CeCu6�xAux [17] exhibit E=T scaling, suggesting
the existence of a new type of QPT [1,7,18,19]. On the
other hand, our recent neutron scattering study on the

heavy fermion CeðRu1�xRhxÞ2Si2 is consistent with the
SDW QPT with no indication of E=T scaling [20].
Therefore, there are many open questions on QPTs for
itinerant antiferromagnets, such as, whether the SDW
QPT can be applicable to the itinerant d- and f-electron
AFM systems, or how fundamentally new QPTs are for-
mulated to account for the complexity of experimental data
of these itinerant systems [6,7,16,19,21,22].
The isomorphous weak AFM metals V2�yO3 [23] and

ðV1�xTixÞ2O3 [24] belong to the celebrated Mott-Hubbard
system ðV1�xMxÞ2O3 (M ¼ Cr, Ti) [25], which shows
metal-insulator transitions due to strong correlation effects
(Fig. 1) [5]. The 3d2 electronic state of the V3þ ion is in an
S ¼ 1 high spin state with an effective moment �2:8�B

[26,27]. For the AFM metallic ðV1�xTixÞ2O3 (x > 0:05),
only a small fraction of the moment �0:3�B forms the
AFM ordering below TN ¼ 23 K (x ¼ 0:1) [24]. The
second-order AFM transition is tuned to a QPT by hydro-
static pressure of the order of 2 GPa [23,28], and quantum-
critical behavior can be expected to be observed in the
paramagnetic metallic phase.
Previous neutron-scattering experiments on V2�yO3

clarified several interesting aspects of this system [23].
At the same time, their results raised some controversy
[1]. In those experiments, AFM spin fluctuations were
roughly consistent with a SDW QPT, while the data sug-
gested the E=T scaling indicating a novel QPT. However,
the statistical accuracy of those experiments was not suffi-
cient for drawing a definite conclusion on the QPT. Thus in
this work, we reinvestigate the AFM quantum-critical be-
havior in the paramagnetic metallic phase using
ðV0:9Ti0:1Þ2O3 [24], which is suited for the present purpose
because its local disorder is weaker than in V2�yO3. By

sufficiently improving the statistical accuracy, we have
concluded that the AFM spin fluctuations agree well with
those of the SDW QPT in three space dimensions.
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Neutron-scattering measurements were performed on
the triple-axis spectrometers ISSP-GPTAS at the Japan
Atomic Energy Agency, BT-7 at the NIST Center for
Neutron Research, and HB1 at Oak Ridge National
Laboratory (ORNL). They were operated using a final
energy of Ef ¼ 14 meV, providing an energy resolution
of 1.4 meV (full width at half maximum) at elastic posi-
tions. A single-crystal sample of ðV0:9Ti0:1Þ2O3 with a
weight of 2 g was grown by the floating zone method.
The crystal was mounted in closed-cycle He-gas refriger-
ators so as to measure a ðH; 0; LÞ ¼ Ha� þ Lc� scattering
plane, where a� and c� are the hexagonal reciprocal lattice
vectors. All the data shown are converted to the dynamical
susceptibility and corrected for the magnetic form factor.

The AFM fluctuations of ðV0:9Ti0:1Þ2O3 expressed as the
imaginary part of the dynamical susceptibility at wave
vector Qþ q, where Q ¼ ð1:90� 0:01Þc� is the AFM
modulation wave vector [24], are described by the
Lorentzian function [23]

Im�ðQþ q; EÞ ¼ �ðQÞ�ðQÞE
E2 þ ½�ðQÞ þDðq2c þ Fq2abÞ�2

; (1)

where E represents the excitation energy, qc and qab are
components of q along the c axis and in the ab plane,
respectively, D and F are T independent parameters, �ðQÞ

and �ðQÞ stand for the wave-vector-dependent magnetic
susceptibility and characteristic energy, respectively. This
form agrees with the approximation used in the theory
[1,3,7,8] of the SDW QPT for small q and E, provided
that the product �ðQÞ�ðQÞ is T independent. We note that
�ðQÞ vanishes at a QPT. In Fig. 2(a), the dynamical sus-
ceptibility Eq. (1) is illustrated using parameters at T ¼
30 K, where �ðQÞ ¼ 0:95 meV. To confirm this
Lorentzian function for ðV0:9Ti0:1Þ2O3, we carried out
constant-E scans along the q ¼ ð�H; 0; 0Þ and ð0; 0;�LÞ
lines at three typical temperatures T ¼ 30, 50, and 75 K.
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FIG. 2 (color online). (a) Illustration of the quantum-critical
behavior of the dynamical susceptibility Im�ðQþ q; EÞ, Eq. (1),
at T ¼ 30 K. (b), (c) Constant-E scans taken with E ¼ 2, 4, and
8 meV along (b) q ¼ ð�H; 0; 0Þ and (c) ð0; 0;�LÞ lines at T ¼
30, 50 and 75 K. Curves are fits using Eq. (1) convoluted with the
resolution function.
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FIG. 1 (color online). Phase diagram of ðV1�xMxÞ2O3 (M ¼
Cr, Ti) is reproduced using data points of Refs. [24,25]. PMI,
PMM, AFMI, and AFMM stand for paramagnetic insulator,
paramagnetic metal, antiferromagnetic insulator, and antiferro-
magnetic metal phases, respectively. AFM QC regime, inferred
from the present study for x ¼ 0:1, is the temperature range
where the quantum-critical AFM fluctuations are controlled by
the SDW QPT. The AFM transition between PMM and AFMM
is a second-order phase transition which is tuned to the QPT by
hydrostatic pressure [23,28].
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By least squares fitting, we obtained D ¼ 96� 4 meV �A2

and F ¼ 0:77� 0:03. In Figs. 2(b) and 2(c), we show these
spectra together with the fit curves of Eq. (1) convoluted
with the resolution function. One can see from this figure
that Eq. (1) well reproduces the experimental data, in
particular, for small q and E. By this reproduction, we
confirmed another assumption of Eq. (1) that �ðQþ
qÞ�ðQþ qÞ does not depend on q.

The theory of the SDW QPT in three dimensions pre-
dicts [1,7] that the characteristic energy �ðQÞ depends on T
as

�ðQÞ ¼ c1 þ c2T
3=2; (2)

where c1ð<0Þ and c2 are constants, in the quantum-critical
regime TN < T � Tcoh, where the coherence temperature
Tcoh � 450 K [29] represents the effective Fermi energy. It

should be noted that the T dependence of T3=2 [8,10] in
Eq. (2) is the most important characteristic of the SDW
QPT. We also note that Eq. (2) breaks down near TN

because the theory neglects the criticality of the finite-
temperature phase transition. In an alternative formalism
using the self-consistent renormalization (SCR) theory of
spin fluctuations [3,8], equivalent to the SDW QPT, the T
dependence of �ðQÞ is determined by the self-consistent
equation

�ðQÞ ¼ c01 þ FQ

Z 1

0
dE

1

eE=kBT � 1

X
q

Im�ðQþ q; EÞ;

(3)

where c01ð<0Þ is a constant and FQ is the mode-mode

coupling constant. This equation employed with Eq. (1)
and �ðQÞ�ðQÞ ¼ const can be used as an experimental fit
formula, where c01 and FQ are treated as adjustable

parameters.
In order to accurately measure the T dependence of

�ðQÞ, we performed constant-Q scans at the AFM wave
vector using better counting statistics than Ref. [23]. The
observed spectra were fit to Eq. (1) convoluted with the
resolution function. Several spectra and fit curves are
shown in Fig. 3, demonstrating excellent agreement be-
tween the observation and calculation. Figure 4 shows the

T dependence of �ðQÞ and �ðQÞ�ðQÞ as a function of T3=2

and T, respectively. The predictions of the SDW QPT,
Eq. (2) and �ðQÞ�ðQÞ ¼ const, which are also plotted
using lines in the figure, are in good agreement with the
experimental data in the range 1:1TN < T < 80 K. By least
squares fitting, we obtained c1 ¼ �0:37� 0:05 meV and

c2 ¼ 0:0083� 0:0002 K�3=2. We also performed the SCR
fit using Eq. (3), where c01 ¼ �1:1� 0:2 meV provided
the best fit. This fit curve shown in Fig. 4 also well
reproduces the experimental data in the same temperature
range. Therefore, we conclude that the AFM spin fluctua-
tions of ðV0:9Ti0:1Þ2O3 in 1:1TN < T < 80 K, which can be
regarded as the quantum-critical regime, are well ac-

counted for by the quantum-critical behavior of the SDW
QPT in three dimensions.
It should be noted that the theories of SDW QPTs are

based upon the single-band Hubbard model in a weak
correlation regime [3,8,10–12]. However, the electronic
state of V2O3 is represented by a three-band model with
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FIG. 4 (color online). Temperature dependence of the charac-
teristic energy �ðQÞ of the AFM spin fluctuations is plotted as a
function of T3=2. The curves represent the prediction Eq. (2) for
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strong correlation [26]. The two 3d electrons in the V3þ
ion occupying three degenerate t2g orbitals are coupled by

a strong Hund’s rule exchange interaction, which gives rise
to the S ¼ 1 state and the orbital degrees of freedom [26].
The prominent quasiparticle peak at the Fermi energy
observed by photoemission spectroscopy [27] and the
low coherence temperature Tcoh � 450 K [29] underline
the importance of the strong correlation in V2O3. Thus, the
present result poses a natural question whether the para-
magnetic metallic state of the realistic three-band model
shows the same quantum criticality as the SDW QPT. We
note that Tcoh is comparable to the temperature scale T0 �
320 K of the SCR theory [8,30], and that the upper bound
temperature 80 K of the quantum-critical regime in
ðV0:9Ti0:1Þ2O3 may be partly ascribed to orbital fluctua-
tions [23], which are neglected in the theories of the SDW
QPT.

It is widely accepted that the correct understanding of
AFM QPTs is essential for studying unconventional super-
conductivity which has been found in an increasing num-
ber of strongly correlated electron systems, including
high-Tc cuprates, heavy-fermion, and organic supercon-
ductors, e.g., La2�xSrxCuO4 [31]. In these systems, attrac-
tive electron couplings were proposed to be ascribed to
AFM spin fluctuations [3,19]. In this context, the spin
fluctuations observed in ðV0:9Ti0:1Þ2O3 can be considered
as a simple nonsuperconducting case [30].

In conclusion, neutron scattering shows that the
quantum-critical spin fluctuations in the paramagnetic me-
tallic phase of the Mott-Hubbard system ðV0:9Ti0:1Þ2O3

agree well with the theoretical predictions of the SDW
QPT in three dimensions. The present work is the first
clear verification of the SDW QPT in a d-electron itinerant
antiferromagnet. The present finding and our recent similar
result of an f-electron heavy fermion [20] imply that a
broader theoretical basis for the SDW QPT is required to
include multiband models and strong correlation effects.
Further investigations of the AFM long-range ordered state
close to the SDW QPT and crossover phenomena of the
QPT to finite-temperature phase transitions will be
interesting.
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